10 research outputs found

    Colonization and Osteogenic Differentiation of Different Stem Cell Sources on Electrospun Nanofiber Meshes

    No full text
    Numerous challenges remain in the successful clinical translation of cell-based therapies for musculoskeletal tissue repair, including the identification of an appropriate cell source and a viable cell delivery system. The aim of this study was to investigate the attachment, colonization, and osteogenic differentiation of two stem cell types, human mesenchymal stem cells (hMSCs) and human amniotic fluid stem (hAFS) cells, on electrospun nanofiber meshes. We demonstrate that nanofiber meshes are able to support these cell functions robustly, with both cell types demonstrating strong osteogenic potential. Differences in the kinetics of osteogenic differentiation were observed between hMSCs and hAFS cells, with the hAFS cells displaying a delayed alkaline phosphatase peak, but elevated mineral deposition, compared to hMSCs. We also compared the cell behavior on nanofiber meshes to that on tissue culture plastic, and observed that there is delayed initial attachment and proliferation on meshes, but enhanced mineralization at a later time point. Finally, cell-seeded nanofiber meshes were found to be effective in colonizing three-dimensional scaffolds in an in vitro system. This study provides support for the use of the nanofiber mesh as a model surface for cell culture in vitro, and a cell delivery vehicle for the repair of bone defects in vivo

    Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects

    No full text
    Osteogenic growth factors that promote endogenous repair mechanisms hold considerable potential for repairing challenging bone defects. The local delivery of one such growth factor, bone morphogenetic protein (BMP), has been successfully translated to clinical practice for spinal fusion and bone fractures. However, improvements are needed in the spatial and temporal control of BMP delivery to avoid the currently used supraphysiologic doses and the concomitant adverse effects. We have recently introduced a hybrid protein delivery system comprised of two parts: a perforated nanofibrous mesh that spatially confines the defect region and a functionalized alginate hydrogel that provides temporal growth factor release kinetics. Using this unique spatiotemporal delivery system, we previously demonstrated BMP-mediated functional restoration of challenging 8 mm femoral defects in a rat model. In this study, we compared the efficacy of the hybrid system in repairing segmental bone defects to that of the current clinical standard, collagen sponge, at the same dose of recombinant human BMP-2. In addition, we investigated the specific role of the nanofibrous mesh tube on bone regeneration. Our results indicate that the hybrid delivery system significantly increased bone regeneration and improved biomechanical function compared to collagen sponge delivery. Furthermore, we observed that presence of the nanofiber mesh tube was essential to promote maximal mineralized matrix synthesis, prevent extra-anatomical mineralization, and guide an integrated pattern of bone formation. Together, these results suggest that spatiotemporal strategies for osteogenic protein delivery may enhance clinical outcomes by improving localized protein retention

    Contributors

    No full text
    corecore